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Abstract. In this paper we describe a hybrid model and an
optimization-based control strategy for solving a traction control prob-
lem currently under investigation at Ford Research Laboratories. We
show through simulations on a model and a realistic set of parameters
that good and robust performance is achieved. Furthermore, the result-
ing optimal controller is a piecewise linear function of the measurements
that can be implemented on low cost control hardware.

1 Introduction

For more than a decade advanced mechatronic systems controlling some aspects
of vehicle dynamics have been investigated and implemented in production [13].
Among them, the class of traction control problems is one of the most studied.
Traction controllers are used to improve a driver’s ability to control a vehicle
under adverse external conditions such as wet or icy roads. By maximizing the
tractive force between the vehicle’s tire and the road, a traction controller pre-
vents the wheel from slipping and at the same time improves vehicle stability
and steerability. In most control schemes the wheel slip, i.e., the difference be-
tween the normalized vehicle speed and the speed of the wheel is chosen as the
controlled variable. The objective of the controller is to maximize the tractive
torque while preserving the stability of the system. The relation between the
tractive force and the wheel slip is nonlinear and is a function of the road condi-
tion [2]. Therefore, the overall control scheme is composed of two parts: a device
that estimates the road surface condition, and a traction controller that regulates
the wheel slip at any desired value. Regarding the second part, several control
strategies have been proposed in the literature mainly based on sliding-mode con-
trollers, fuzzy logic and adaptive schemes [5, 14, 4, 19, 20, 17, 2, 18]. Such control
schemes are motivated by the fact that the system is nonlinear and uncertain.

The presence of nonlinearities and constraints on one hand, and the sim-
plicity needed for real-time implementation on the other, have discouraged the
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Fig. 1. Simple vehicle model

design of optimal control strategies for this kind of problem. Recently we pro-
posed a new framework for modeling hybrid systems [8] and an algorithm to
synthesize piecewise linear optimal controllers for such systems [6]. In this paper
we describe how the hybrid framework [8] and the optimization-based control
strategy [6] can be successfully applied for solving the traction control problem
in a systematic way. We show, through simulations on a simplified model and for
a set of parameters provided by Ford Research Laboratories, that good and ro-
bust performance can be achieved. Furthermore, the resulting optimal controller
consists of a piecewise linear function of the measurements, that can be easily
implemented.

A mathematical model of the vehicle/tire system is introduced in Section 2.
The hybrid modeling and the optimal control strategy are discussed in Sec-
tions 2.1 and 3, respectively. In Section 4 we derive the piecewise affine optimal
control law for traction control and present some simulation results.

2 Vehicle Model

The model of the vehicle used for the design of the traction controller is depicted
in Figure 1, and consists of the equations
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with

τ̇c(t) = −kiτc(t) + kiτd(t − τf ) (2)

where the involved physical quantities and parameters are described in Table 1.
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Table 1. Physical quantities and parameters of the vehicle model

ωe Engine speed rt Tire radius
vv Vehicle speed τc Actual combustion torque
J′

e Combined engine/wheel inertia τd Desired combustion torque
be Engine damping τt Frictional torque on the tire
gr Total driveline gear ratio between ωe and vv µ Road coefficient of friction
mv Vehicle mass τf Fueling to combustion pure delay period
∆ω Wheel slip

The frictional torque τt is approximated as a piecewise linear function of the
slip ∆ω and of the road coefficient of friction µ

τt(∆ω, µ) =
{

ki
1∆ω if ∆ω ≤ ∆ωi

b

ki
2∆ω if ∆ω > ∆ωi

b
for µi ≤ µ ≤ µi+1 i = 0, . . . , N (3)

as depicted in Figure 2(a).
Model (1) contains two states for the mechanical system downstream of the

manifold/fueling dynamics. The first equation represents the wheel dynamics
under the effect of the combustion torque and of the traction torque, while
the second one describes the longitudinal motion dynamics of the vehicle. In
addition to the mechanical equations (1) the air intake and fueling model (2)
also contributes to the dynamic behaviour of the overall system. For simplicity,
the intake manifold dynamics is modeled as a first order filter and the fueling
combustion delay is modeled as a pure delay.

2.1 Discrete-Time Hybrid Model

Hybrid systems provide a unified framework for describing processes evolving ac-
cording to continuous dynamics, discrete dynamics, and logic rules [1, 16, 10, 3].
The interest in hybrid systems is mainly motivated by the large variety of prac-
tical situations, for instance real-time systems, where physical processes interact
with digital controllers. Several modeling formalisms have been developed to de-
scribe hybrid systems [12,15], among them the class of Mixed Logical Dynamical
(MLD) systems introduced by Bemporad and Morari [8]. Examples of real-world
applications that can be naturally modeled within the MLD framework are re-
ported in [7, 8, 9]. The language HYSDEL (HYbrid Systems DEscription Lan-
guage) was developed in [21] to obtain MLD models from of a high level textual
description of the hybrid dynamics.

The model obtained in Section 2 is transformed into an equivalent discrete-
time MLD model through the following steps:

1. Discretize the model (1)–(3) with sampling time Ts = 20 ms;
2. Introduce an auxiliary logic variable δi for each interval [µi, µi+1] whose

value can be 1 or 0 depending on the value of the slip ∆ω, as shown in
Figure 2(b).
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Fig. 2. Model of the tire torque τt as a function of the slip ∆ω and road coefficient
adhesion µ

Remark 1. In the sequel we will use a simplified model where the slopes k1
1 =

k2
1 = . . . = kN

1 and k1
2 = k2

2 = . . . = kN
2 , while the breakpoints ωi

b in (3) are
allowed to be different. In this case the number of auxiliary logic variables δi

reduces from log2 N to 1, at the price of a “rougher” model of the nonlinearity.
The resultant MLD system is the following1:

x(t + 1) = Ax(t) + B1u(t) + B2δ(t) + B3z(t) (4a)
y(t) = Cx(t) + D1u(t) + D2δ(t) + D3z(t) (4b)

E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5 (4c)

where x ∈ R
5, (x1 = ∆ωd, x2 = ωe, x3 = vv, x4 = τt, x5 = τc), u ∈ R, (u = τd),

y ∈ R (y = ∆ω), δ ∈ {0, 1} and z ∈ R
3. The variables δ and z are auxiliary

variables whose value is determined uniquely by the inequalities (4c) once x(t)
and u(t) are fixed [8].

In Figure 4 we compare the evolution of the discrete-time MLD model (4)
with the evolution of the continuous time model (1)–(3), depicted in Figure 3,
when µ = .1, ∆ωb = 2 rad/s and a pulse torque τd = 50 Nm is applied to the
system. The MLD model (4) captures in discrete time the hybrid behavior of
the system satisfactorily.

3 Optimal Control

It is clear from Figure 2(b) that if the slip increases beyond ∆wb, the driving force
on the tire decreases considerably and the vehicle cannot speed up as desired. By
1 The numerical values of the matrices in (4) are reported in the Appendix.
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Fig. 3. Simulink scheme of the vehicle model
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Fig. 4. Continuous time simulation of the Matlab-Simulink block in Figure 3 (solid
line), discrete-time simulation of the MLD model (dashed line)

maximizing the tractive force between the vehicle’s tire and the road, a traction
controller prevents the wheel from slipping and at the same time improves vehicle
stability and steerability. The overall control scheme is composed of two parts: a
device that estimates the road surface condition, and a traction controller that
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regulates the wheel slip at any desired value. In this paper we will focus only on
the second part, as the first one is available at Ford Research Laboratories.

Once the road coefficient of adhesion µ has been estimated, a desired wheel
sleep ∆ωk

d is chosen corresponding to the breakpoints ∆ωk
b in model (3),

µ ∈ [µk−1, µk], where the frictional torque τt(∆ω) on the tire is maximized.
Alternatively, to increase the safety of the controller [18] we could avoid operat-
ing in the region where the slope of the curve τt(∆ω) is negative, see Figure 2(b),
by simply choosing ∆ωk

d(µ) < ∆ωk
b (µ ∈ [µk−1, µk]). The control system takes

the desired wheel slip ∆ωk
d and measured wheel speed as input and generates the

desired engine torque. The following constraints on the torque and its variation
need to be satisfied:

− 20 Nm ≤ τd ≤ 176 Nm (5)
τ̇d(t) ≤ 2000 Nm/s (6)

In the sequel we describe how a Model Predictive Controller (MPC) can
be designed for the posed traction control problem described. The main idea
of MPC is to use the model of the plant to predict the future evolution of the
system. Based on this prediction, at each time step t a certain performance
index is optimized under operating constraints with respect to a sequence of
future input moves. The first of such optimal moves is the control action applied
to the plant at time t. At time t + 1, a new optimization is solved over a shifted
prediction horizon. For the traction control problem, at each time step t the
following finite horizon optimal control problem is solved:

min
{∆uT −1

0 }
T−1∑
k=0

|∆ω(t + k|t) − ∆ωd(t)| (7)

subj. to




MLD dynamics (4)
τmin ≤ u(t + k) ≤ τmax, k = 0, 1, . . . , T − 1

∆τmin ≤ δu(t + k) ≤ ∆τmax, k = 0, 1, . . . , T − 1
xmin ≤ x(t + k|t) ≤ xmax, k = 1, . . . , T − 1

(8)

where ∆uT−1
0 = {δu(t), . . . , δu(t+T −1)}, and “(t+k|t)” denotes the predicted

value at time t + k based on the state information available at time t. Note
that the optimization variables are not the future inputs ut+k, but the variation
δu(t + k) = u(t + k) − u(t + k − 1), which makes it necessary to increase the
dimension of the state vector by one to include the previous torque τd(t − 1) as
a an additional state x6(t) = τd(t − 1).

Problem (7)-(8) can be translated into a mixed integer linear program
(MILP) (the minimization of a linear cost function subject to linear constraints
where variables can be binary and/or continuous) of the form:

min
z={zc,zd}

fT
c zc + fT

d zd

subj. to Gczc + Gczd ≤ S + Fx(t)
(9)

where zc ∈ R
l and zd ∈ {0, 1}m.
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Given the measurement of the state x(t), problem (9) is solved at each time
step, but only the first optimal input u∗(t) = τd(t − 1) + δu∗

0 is implemented as
the new command torque τd(t). At the next time step the procedure is repeated
starting with the new measurement of the state.

The design of the controller is performed in two steps. First, the MPC con-
troller (7)-(8) based on model (4) is tuned in simulation until the desired per-
formance is achieved. The MPC controller is not directly implementable, as it
would require the MILP (9) to be solved on-line, which is clearly prohibitive
on standard automotive control hardware. Therefore, for implementation, in the
second phase the explicit piecewise linear form of the MPC law (see Section 4.2)
is computed off-line by using the multi-parametric mixed integer programming
solver presented in [11]. Although the resulting piecewise linear control action
is identical to the MPC designed in the first phase, the on-line complexity is
reduced to the simple evaluation of a piecewise linear function.

4 Controller Design

The only parameter of the controller (7)-(8) to be tuned is the horizon length T .
By increasing the prediction horizon the controller performance improves, but
at the same time the number of constraints in (8) increases. As will be explained
in Section 4.2 the complexity of the final piecewise linear controller increases
with the number of constraints in (8). Therefore, tuning T amounts to finding
the smallest T which leads to a satisfactory closed-loop behaviour.

4.1 Simulations

We simulate the closed-loop composed of the traction controller (7)-(8) and
model (1)-(2), where the piecewise linear function modeling the frictional torque
on the tire τt (3) is replaced by a more accurate nonlinear model provided by
Ford, see Figure 5. The actual combustion torque τc is estimated from the two
measurements ωe and vv by using an extended Kalman Filter designed for the
PWA model.

The controlled system is simulated with an initial vehicle speed of zero. The
intake manifold state τc is set to a large torque value, namely τc(0) = 100 Nm, in
order to approximate a wide-open throttle launch from a standstill. In Figure 6
we simulate a straight-ahead driving with a transition at time t∗ = 2 s from a
high coefficient of friction µ = 0.9, and ∆ωd = 18 rad/s (cement pavement) to
a low one µ = 0.1, ∆ωd = 2 rad/s (dry ice). The simulations show the good
performance of the controller despite the large mismatch between the nonlinear
model of the frictional torque model and the piecewise linearized one.

The following controllers are simulated:

– Controller 1 (Figure 6(a)): T=3;
– Controller 2 (Figure 6(b)): T=9;

The Simulink control diagram used for simulation is shown in Figure 5.
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Fig. 5. Simulink diagram of the closed-loop control system

4.2 Explicit Controller

Once the controller has been tuned, the explicit piecewise linear form of the
MPC law is computed off-line by using a multiparametric mixed integer linear
programming (mp-MILP) solver, according to the approach of [6]. Rather than
solving the MILP (9) on-line for the given current state x(t), the idea is to use
the mp-MILP solver to compute off-line the solution of the MILP (9) for all the
states x(t) within a given polyhedral set.

As shown in [6], the explicit solution z∗(x(t)) of (9) is a piecewise affine func-
tion of x(t). Therefore, the model predictive controller is also available explicitly,
as the optimal input δu(t) consists simply of a component of z∗(x(t)). As a re-
sult, the state space is partitioned into polyhedral sets, where an affine control
law is defined in each polyhedron.

We remark that for any given state x(t) the on-line solution of MPC and
the explicit off-line solution provide the same result. Therefore, a good design
strategy consists of tuning the MPC controller using simulation and on-line
optimization, and then to convert the controller to its piecewise affine explicit
form. The explicit controller will behave in exactly the same way at much lower
computation cost.

The result of the mp-MILP solver is a list of N records. The i-th record
contains the constraints defining the i-th polyhedral region H(i)x ≤ K(i),
H(i) ∈ R

mi×n, and the corresponding i-th gain δu = F (i)x + G(i). The con-
trol law can be implemented on-line in the following simple way: (1) determine
the i-th region that contains the actual vector state x(t) (measured and/or es-
timated); (2) compute δu(t) = F (i)x(t) + G(i), according to the corresponding
i-th control law.
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Fig. 6. Closed-loop simulation of Controller 1 and Controller 2. Straight-ahead driving
with a transition at time t∗ = 2 s from a high coefficient of friction µ = 0.9, and
∆ωd = 18 rad/s (cement pavement) to a low one µ = 0.1, ∆ωd = 2 rad/s (dry ice)

In Figure 6(a) we report the performance achieved with two explicit
MPC controllers, obtained by solving the mp-MILP problem for the box
Xmin ≤ x(t) ≤ Xmax, Xmin = [0, 0, 0,−20,−20,−40] and Xmax =
[20, 150, 10, 100, 300, 40]:

– Controller 1 : T=3, Number of regions N = 76, maximum number of con-
straints per region M = maxi=1,... ,N mi = 13;

– Controller 2: T=9, Number of regions N = 243, maximum number of con-
straints per region M = 25.
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As an example, we report only the first and last region of Controller 1:

δu =




− 40.0000

if




0.0 0.0 −0.0 0.0 0.0 −0.05
0.0 0.01 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.01 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.02

−1.0 0.0 0.0 0.0 0.0 0.0
0.0 −1.0 0.0 0.0 0.0 0.0
0.0 0.0 −1.0 0.0 0.0 0.0
0.0 0.0 0.0 −0.05 0.0 0.0

−6.13 0.47 −22.70 −0.02 0.14 0.02
0.0 0.0 −0.0 0.0 0.0 −0.05

15.83 −1.22 58.65 0.03 −0.24 −0.03
−8.0 1.23 −59.26 −0.01 0.07 0.0

−31.57 2.43 −116.94 −0.05 0.47 0.00
12.25 −0.94 45.38 0.03 −0.26 −0.02




x ≤




−1.0
1.0
1.0
1.0
1.0
0.0
0.0
1.0
1.0

−1.0
1.0
0.0

−1.0
−1.0




(Region #1)

...




368.11
−28.34
1363.38

0.85
−7.13
−1.00




T

x + 11.59

if




43.7456 −3.3676 162.0209 0.1011 −0.8468 −0.0
−7.8681 0.6057 −29.1410 −0.0153 0.1391 0.0178
−6.1306 0.4719 −22.7058 −0.0180 0.1364 0.0215

−8.0 1.2317 −59.2593 −0.0068 0.0697 −0.0
0.0 0.0067 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0100 0.0 0.0

−1.0 0.0 0.0 0.0 0.0 0.0
0.0 −1.0 0.0 0.0 0.0 0.0
0.0 0.0 −1.0 0.0 0.0 0.0
0.0 0.0 0.0 −0.0500 0.0 0.0
0.0 0.0 0.0 0.0 0.0 −0.05




x ≤




1.0
−1.0
1.0
0.0
1.0
1.0
1.0
0.0
0.0
1.0
1.0




(Region #76)

(10)

In Figure 7 a zoomed section of the control law associated with Controller 1
is shown. The section is obtained by fixing the torque τc = 20, the desired slip
∆ωd = 2, the friction torque τt = 80, and the previous input τd(t−1) = 20. Note
that the southeast corner is not feasible because it corresponds to a negative slip.

5 Conclusion

In this paper we described a hybrid model and an optimization-based control
strategy for a traction control problem. We showed, through simulations on a
model and a realistic set of parameters from Ford Research Laboratories, that
good and robust performance is achieved. Furthermore, the resulting optimal
controller is a piecewise linear function of the measurements that can be easily
implemented on low cost hardware. In order to ease the implementation of the
controller, the number of regions in the piecewise linear law should be reduced.
One possible way is to exploit reachability analysis for hybrid systems in order to
remove regions which are never entered, for all the operating conditions within
a realistic set. At the same time, for complex piecewise linear partitions, we



172 F. Borrelli et al.

are developing efficient forms of implementation that greatly reduce the num-
ber of regions to be stored by exploiting properties of multiparametric linear
programming.

Acknowledgments. We thank Manfred Morari for fruitful discussions and his
helpful comments on the original manuscript.

6 Appendix

Below we report the numerical values of the matrices in (4) obtained by using the
tool HYSDEL. See http://www.aut.ee.ethz.ch/˜hybrid/FordExample.html

A =


 1 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0.819 0.181
0 0 0 0 0 1


 , B1 =


 0

0
0
0

0.18127
1


 , B2 =


 0

0
0
0
0
0


 , B3 =


 0 0 0

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0




C = [ 0 0 0 1 0 0 ] , D1 = [ 0 ] , D2 = [ 0 ] , D3 = [ 0 0 0 ]

E1 =




0
0
0
0
0
0
0
0
0
0
0
0
0
0




, E2 =




100−700
1400
200
6000
1400
200
6000−1400
−200
−6000
−1400
−200
−6000




, E3 =




0 0 0
0 0 0−1 0 0
0 −1 0
0 0 −1
1 0 0
0 1 0
0 0 1−1 0 0
0 −1 0
0 0 −1
1 0 0
0 1 0
0 0 1




E4 =




−1 0 −4 0 0 0
1 0 4 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 −1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0




, E5 =




100−0.0001
1400
200
6000
200
6000

0
0
0
0
0
0




(11)
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